第四百九十五章特殊的春节(求月票)-《重生科技学霸》


    第(1/3)页

    人类实现可控核聚变方式,可不仅仅只有以托卡马克、仿星器为主的磁约束核聚变,还有超声波核聚变、激光约束核聚变。

    超声波核聚变是冷聚变、常温聚变,其理论基础是超声波再空化发生的时候,可以达到聚变需要的物理条件,而导致发光效应。早在2002年3月8日美利坚《科学》杂志发表了有关‘超声波核聚变’的论文,论文是美利坚橡树岭国家实验室和俄国科学院的科学家组成的研究小组写的,研究小组通过让一个大烧杯所盛液体中小气泡产生的内部爆炸,在实验室获得核聚变的效果。

    实验中,他们采用氘化丙酮液体,对液体施加中子脉冲,使其产生微型气泡,并利用超声波使这些气泡不断地扩大,随着超声波强度的增加,气泡膨胀到一定大小后便发生爆裂,同时产生几千度高温和局部的高压,并伴有大量的冲击波、闪光和能量的释放!

    但是这种超声波核聚变,在科学界中一直存在着争议,并非是主流!

    核聚变研究的主流,还是在于磁约束核聚变和激光引发核聚变这两种。

    不管是托卡马克还是仿星器,归根到底都是磁约束核聚变,这方面是世界各国的共识,普遍认为磁约束核聚变是实现可控核聚变的最好的方法和途径。

    但是关于激光引发核聚变这种可控核聚变方式,从1963年n.巴索夫和1964年华夏科学家王金昌分别独立提出了用激光照射在聚变燃料靶上实现可控热核聚变反应的构想,开辟了实现可控核聚变反应的新途径激光核聚变。从这个理论诞生到现在,其生命力是强大的,哪怕是到了现在,依旧有不少国家在研究激光核聚变。

    激光核聚变要把直径为1毫米的聚变燃料小球均匀加热到1亿度,激光器的能量就必须大于1亿焦,这在技术上是很难做到的。可是激光技术也是在快速发展的,到了1972年美利坚科学家j.纳科尔斯等人提出了向心爆聚原理以后,激光核聚变成为了可控热核聚变研究中与磁约束聚变平行发展的研究途径。

    这几十年,美利坚并没有在磁约束核聚变上投入太多精力,而是将大量精力投入在激光核聚变之上,因为激光核聚变不但可以是一种用不完的清洁能源,同时还可以研制真正的‘干净’核武器,并且可以部分代替核试验,这对于美利坚而言,无疑是最佳选择。

    投入在哪,成果就在哪!

    美利坚在激光核聚变上投入大量的人力物力财力,自然而然在这一领域也是居于世界领先地位。美利坚不仅拥有世界上最大的‘诺瓦’激光器、世界上功率最大的x射线模拟器。而且,早在1998年,美利坚能源部就开始在劳伦斯利弗莫尔国家实验室启动“国家点火装置工程”。这项军民两用的高能激光核聚变研究工程计划于2003年投入运行,总投资为22亿美元。其中的20台激光发生器是研究工作的大型关键设备。

    2012年,美利坚国家点火装置(nif)产生世界上最大的激光束,用来爆聚一个氢同位素标靶,触发核聚变,产生的能量比输入的能量多得多。

    不仅仅是美利坚,法兰西也在激光核聚变上投入不少精力,不过与美利坚兼顾军民两用研究不同,法兰西的激光核聚变研究以军事化为主要目标,其在‘兆焦激光计划’从1996年开始,投入了数十亿美元,用了二十年时间,在纪龙德省建造了240台激光发生器,这些激光发射器可在20纳秒内产生1.8兆焦能量,产生240束激光,集中射向一个含有少量氘、氚的直径为毫米的目标,从而实现激光核聚变。

    但是目前世界来看,磁约束核聚变方式,才是可控核聚变研究领域的主流,在可控核聚变研究领域,大部分学者认为磁约束核聚变方式才是可行的,也是最有可能取得突破的。
    第(1/3)页