第(2/3)页
随后以直线pq与圆Г相切,相切点m,然后通过弦切角定理得出∠qmk=∠mlk。由于点k、m分别是bp、pq的中点,所以km∥bq,从而得出∠qmk=∠aqp。
因此得到∠mlk=∠aqp。
同理,∠mkl=∠apq。
根据角的相等,得到△mkl∽△apo,从而得到mk/ml=ap/aq
因为k、l、m分别是线段bp、cq、pq的中点,所以得到km=bq/2,lm=cp/2,将此带入上式得bq/cp=ap/aq,将式子转为ap·cp=aq·bq。通过圆幂定理知op2=oa2-ap·cp=oa2-aq·bq=oq2
所以,得出结论op=oq。
秦元清连检查都没有检查,将抽向的数学问题转为图像,这个是他擅长的地方,他有十全的把握证明。
紧接着秦元清看向第三题,“3、s1,s2,s3,......是严格递增的正整数数列,并且它的子数列ss1、ss2、ss3,.....和ss1+1,ss2+1,ss3+1......都是等差数列。证明:s1,s2,s3......是一个等差数列。”
看着这一题,秦元清微皱起眉头,这一题明显比前面两道题难得多,秦元清将已知条件稍微捋了一下,这一道题融合了等差数列、以及转换法。
秦元清一步一步地展开,通过数列以及子数列都是严格的递增的正整数数列,设ssk=a+(k-1)d1,ssk+1=b+(k-1)d2(k=1,2......,a、b、d1、d2∈n+)。
将问题转为函数、数列后,以sk
因此a-b≤(k-1)(d2-d1)≤a+d1-b。由k的任意性知d2-d1=0,得到d2=d1。。。。。。
当秦元清写下证明结论,摸了一下额头,发现已经冒汗了,轻轻地吐出一口浊气。
随后秦元清站了起来,做了个交卷的手势。监考官走到他面前,将他的考卷装入文件袋密封。
秦元清轻松自若的离开考场,毫无压力。既然作答了,那么就不会有错。
当秦元清离开考场,才知道他是第一个交卷的,华夏奥数队的队员都还没交卷,其他国家的奥数队也都还没有一个交卷。
“首日竞考感觉如何?”副领队看到秦元清,连忙问道。
“一般般啦,很轻松!”秦元清潇洒地摆摆手:“还没有集训考试难,放心,42分跑不了!”
副领队闻言顿时松了口气,在这一支华夏奥数队,秦元清是王牌存在,是压舱石,既然秦元清这么说,那说明今年的难度不大。
“就是第一道题,也不知道哪一国出题的,设了个陷阱,一不小心就会做错。太缺德了,和我们这些高中生耍心眼!”秦元清吐槽地说道。
第(2/3)页